Logistic regression for graph classification

نویسنده

  • Koji Tsuda
چکیده

In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression on graphs. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics. Our method is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...

متن کامل

Application of Support Vector Machine Modeling and Graph Theory Metrics for Disease Classification

Disease classification is a crucial element of biomedical research. Recent studies have demonstrated that machine learning techniques, such as Support Vector Machine (SVM) modeling, produce similar or improved predictive capabilities in comparison to the traditional method of Logistic Regression. In addition, it has been found that social network metrics can provide useful predictive informatio...

متن کامل

Genre Classification Using Graph Representations of Music

A song can be represented by a graph, where nodes and edges represent individual pitchduration tuples and co-occurrence of multiple notes respectively. A set of features can be derived from said graph for use in a variety of classification algorithms. In an attempt to derive meaning and utility from these graph features, we tackled the issue of genre classification–a highly subjective form of c...

متن کامل

Comparing the Results of Logistic Regression Model and Classification and Regression Tree Analysis in Determining Prognostic Factors for Coronary Artery Disease in Mashhad, Iran

Background and purpose: Understanding of the risk factors for cardiovascular artery disease, which is the leading cause of death worldwide, can lead to essential changes in its etiology, prevalence, and treatment. The aim of this study was to compare the results of logistic regression model and Classification and Regression Tree Analysis (CART) in determining the prognostic factors for coronary...

متن کامل

Regional simulation and landslide risk prediction based on bivariate logistic regression (A case study: Pahne Kola watershed in north of Iran)

This study aims to assess landslide susceptibility in Pahne Kola watershed located in the south of Sari, based on bivariate logistic regression. For this purpose, the distribution map of the area’s landslides was firstly prepared in ArcGIS software. Eight effective factors on landslide event including elevation, slope, slope aspect, rainfall, land use, distance from the road, soil and geology w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009